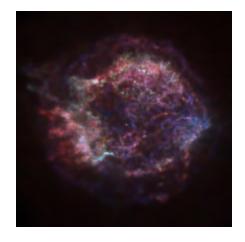
Integral shell mirrors for the Constellation X-ray Mission Hard X-ray Telescope

P. Gorenstein, A. Ivan, R. J. Bruni, S. E. Romaine Harvard-Smithsonian Center for Astrophysics

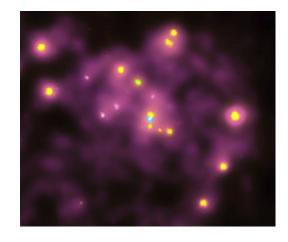
F. Mazzoleni, G. Pareschi, M. Ghigo, O. Citterio Osservatorio Astronomico di Brera (Italy)

Integral (Whole Shell) Electroformed Nickel Optics

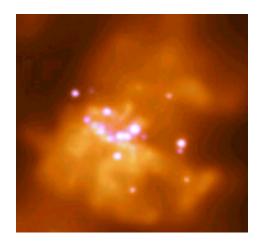
Advantages


- Based upon proven technology, i.e. SAX, JET-X, XMM
- •Best angular resolution, XMM achieved 15 arcsec HPD
- •Smallest number of elements to assemble, by over order of magnitude

Challenges


- Difficult to apply multilayer coatings to interior of closed shell
- •Nickel substrates are heavier than glass or alminum, reduce mass
- •Expensive beginning because a "superpolished" 360 deg mandrel is needed for each shell
- •Smoother (cp XMM) replica surface required

Significance of Better Angular Resolution


- •Higher Sensitivity, most measurments will be background limited, 15 arcsec resolution telescope is 4x more sensitive than 1 arcmin telescope
- •Imaging, spatially resolved spectroscopy
- Avoiding confusion

Cas A, True Color

M31, Central 1 arcminute

M82, 1.5 arcminute

Electroformed Integral Shell Telescope

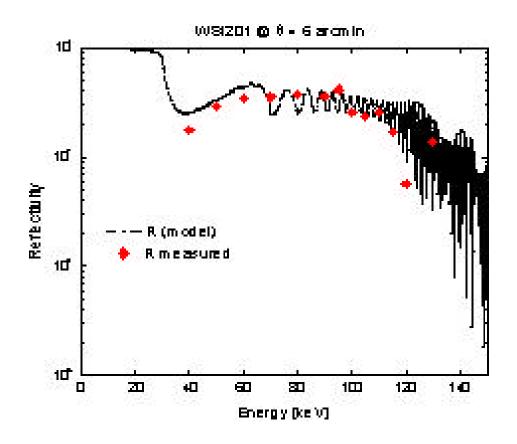
SAX mirrors. For JET-X, XMM, and Con-X HXT, scale up the dimensions and increase number of shells

Constellation-X HXT

Two Methods of Applying Multilayer Coatings

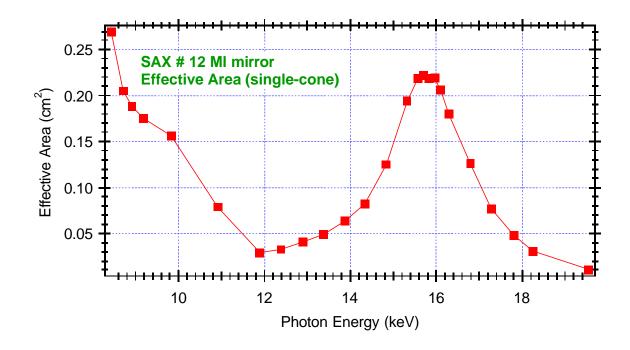
HXT Range of Shell Diameters is 10 to 40 cm

- For shell diameters 16 cm or larger, coating is deposited upon the replica by DC magnetron sputtering, being studied by **SAO**
- For shell diameters < 16 cm, coating is deposited upon the mandrel and transferred to the replica upon separation, being studied by **OAB**


SAO Multilayer Deposition Facility

Capable of coating large area:

- •Flat substrates
- Segmented substrates
- •Interiors walls of cylinders with 15 to 40 cm diameter
- Outer surface of cylinders

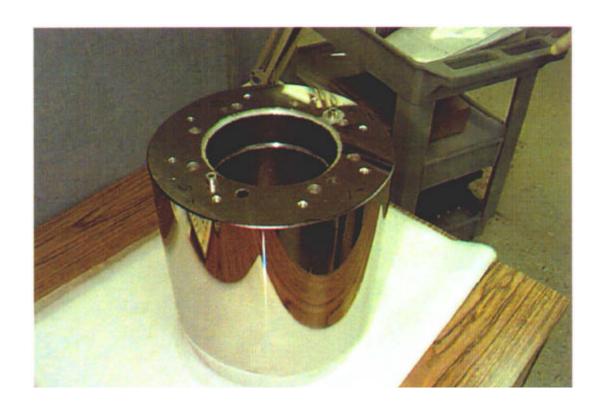


Measurement of Hard X-ray Reflectivity of 300 Period Graded d-Spacing Multilayer at BNL (SAO)

Constellation-X HXT

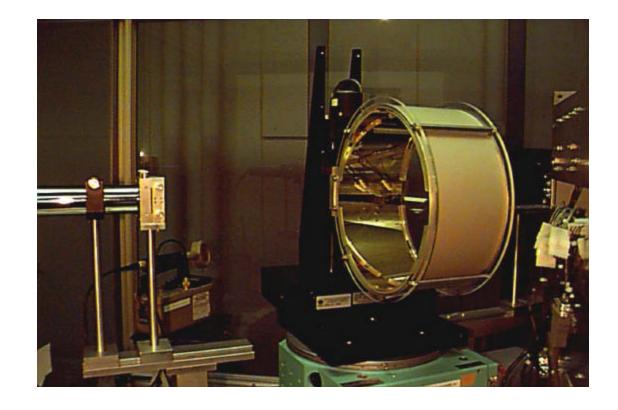
Measurement of Sample of Replica from SAX Mandrel with 10 Uniform Period Layers at the Panter Facility (OAB)

Multilayer Was Transferred Directly from Mandrel to Replica


OAB "Superpolisher"

- Currently PolishingMandrel Provided by SAO
- •Capable of Polishing Flats and Cylinders to 2 Ang. Rms

Mandrel, 28 cm Diameter


Fabricated by SAO (commerically), being "superpolished" at OAB

Constellation-X HXT

Replica, 28cm D.

(Mandrel Not in Final State of Polishing)

Delivered by OAB, to be coated at SAO soon

Constellation-X HXT

Near Term Goals

SAO

SAO + OAB

OAB

Coat current replica with 250 graded bi-layers

Complete polishing of mandrel

Coat flats with multilayers

- Polished fused silica ("gold standard")
- Electroformed (real material

Measure X-ray reflectivity of replica (pencil beams) BNL (May) and/or ESRF (June)

Coat 2nd replica provided by OAB with depth graded multilayers

Media Lario to produce 2nd replica with smoother finish

- More polishing by OAB
- •Refinement in electroforming

Measure full aperture angular resolution of current replica at MSFC